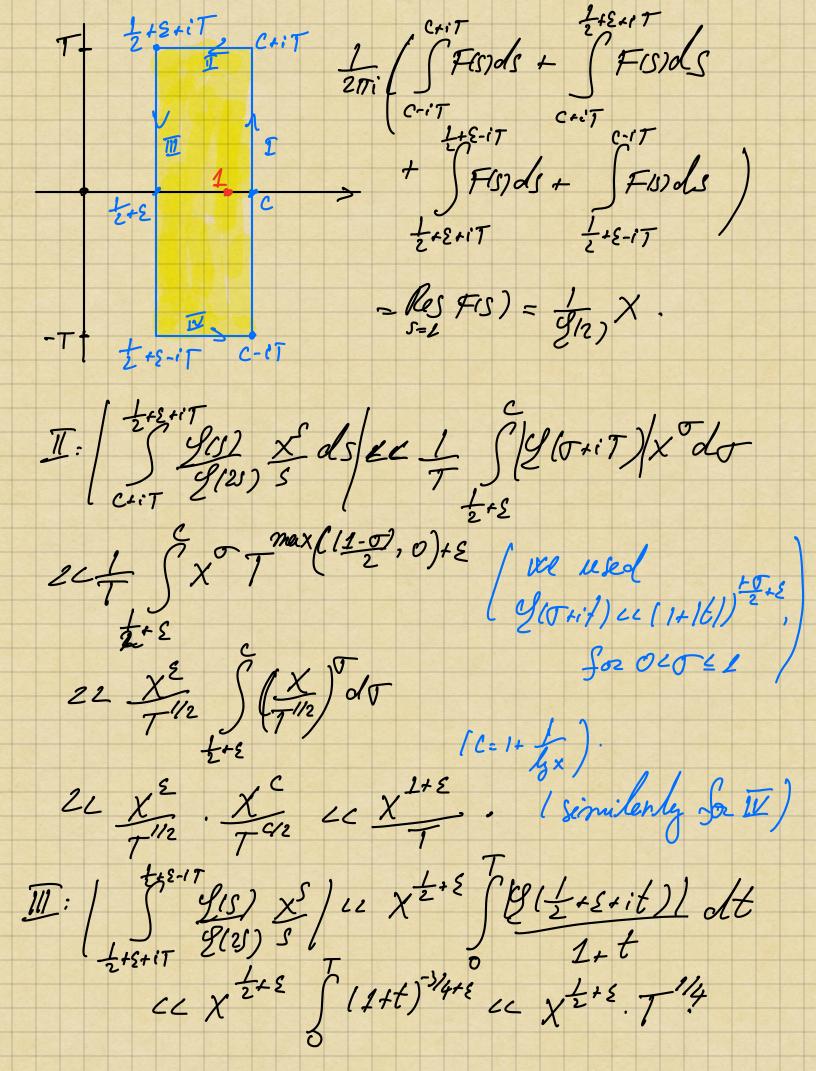
Recall from lest time: Theorem (Truncated Perron formula) let c>0, T, x>2 cerd fe R. If C> Ta(f) and C>1, then $\sum_{n \in X} f(n) = \lim_{n \in X} \int_{n \in X} f(s) \times^{s} ds + E_{x,c}(T),$ where $\{E_{x,c}(T) \mid L \times^{c} \sum_{n=1}^{C-iT} \frac{\mathcal{O}}{n^{c}} + \frac{1}{4} \times \frac{1}{4}$ Corollary: If $f(n) \leftarrow (\log n)^k$ and $2 \leq T \leq 2x$,

Set $C = 1 + \frac{1}{\log x}$. Then $\sum_{n \in X} f(n) = \lim_{n \in X} \int_{C^{-iT}} f(s) \chi^{s} \frac{ds}{s} + O\left(\frac{x \left(\frac{dx}{dx}\right)^{k+1}}{T}\right).$ Proof of corollary: Note that if c= 1+ 1/2, then x = e. x << x. $\frac{\sum_{n=1}^{\infty} |f(n)|}{n^{\epsilon}} c = \sum_{n=1}^{\infty} \frac{(\log n)^{\kappa}}{n^{\epsilon}} = \sum_{n=1}^{\infty} \frac{c-1}{n^{\epsilon}}$

Application: For any $\Sigma > 0$, we have $\sum_{n \leq \chi} \mu^2(n) = \frac{1}{2(12)} \times + O\left(\chi^{\frac{3}{5} + \varepsilon}\right).$ (We will use without proof that for 020 = 1, 1t1 = 2, we have 9(0+it) = (1+tt) = +2. ue prove this later in the course). Compare with Ex2, Sheet 2, where we show there exists a constant c>0 s.t.

There exists a constant c>0 s.t. This implies \ \frac{2}{n \in x} \mu^2(m) = \frac{1}{2(2)} \times + O(\sqrt{x}) 85: Since Lu2 (5) = 9(5), we have that $\frac{\sum_{n \in X} \mu^{2}(n) - \frac{1}{2\pi i} \int_{C-i\tau}^{Git} \frac{f(x)}{f(x)} x^{s} \frac{ds}{s} + O\left(\frac{x}{f}\right),$ where C=1+ fgx Fix \$>0. We want to shift line of integration to Pers1 = 1 + 2 and apply the residue theorem.

Xs has no pole in SRe(S) > 1/2 f. g(s) has a simple pole at s=1 in Shess) s 1 } 1- is holomorphic and uniformly bounded in [Pers? > 1 + 8] holeed, since if Reis) > 1+28, then Reizs) > 1+28, $\frac{1}{2(2s)} = \frac{1}{2} \frac{(2s)}{n^{2s}} = \frac{1}{n^{2s}} \frac{(2s)}{n^{2s}}$ (we are in the area of absolute convergence) $|f(2i\sigma+it)| \leq \frac{\int \mathcal{U}(m)}{n^{2i\sigma+it}}| \frac{\int \mathcal{U}(m) \in So, t = 1}{n^{2i\sigma}} = \frac{\int \mathcal{U}(2\sigma)}{n^{2i\sigma}} \leq \frac{\int \mathcal{U}(2\sigma)}{n^{2$ theorem in the box with corners c-iT, CFiT, 1+ 2+ iT, 1+ E- iT. F(s) has only one simple pole at s = 1 in this box, and les F(s) = $\frac{1}{9(2)}$. X.



Putting everything together: $\sum_{n \in X} u^{2}(n) = \frac{1}{9(2)} X + O(X^{\frac{1}{2}+2} T^{\frac{1}{4}} + \frac{1}{X})$ Choose T= X2/5. Proxf of truncated Person formula: Denote $M_{X} = \max_{\substack{\frac{3}{4}}} 1f(n) 1.$

$$= \sum_{n \in N} f(n) \left(\frac{1}{2\pi i} \int_{-i\pi}^{i\pi} \int_{s}^{i\pi} ds + O\left(\frac{|X_{in}|^{c}}{|T| \log(\frac{x}{n})}\right) \right)$$

$$|N_{in} = \frac{1}{N} \int_{-i\pi}^{i\pi} \frac{1}{N} \int_{-i\pi}^{i\pi} \frac{1}{N} \int_{s}^{i\pi} \frac{1}{N} \int$$

Similarly for $n = 23 \times (g(X)) \ge \log(4) > 0$, $SO\left[\frac{1}{nL_{4}^{2}}\right]\left(\frac{x/n}{L_{4}^{2}}\right)^{c}\left[\frac{1}{L_{4}^{2}}\right]$ Finally, for 3 x = n = 5 x, write n = LXJ+h, So $\left| \log \left(\frac{n}{x} \right) \right| = \left| \log \left(1 + \left(\frac{n-x}{x} \right) \right) \right| = \frac{|h|}{2x}$ (we have used that log (1+5) = 151, for 52/3.) There fore $\sum_{3,x \le n \le 5} f(n)$. $(\frac{x}{n})^c$ O(1) $\frac{3}{4} \times (\frac{x}{2} \le x) \times \frac{1}{2} \left(\frac{x}{2} \right)^c \left(\frac{x}{3}\right)^c \left(\frac{x}{$ Coverges uniformly absolutely on Pels)=c

1 since C > Jalf), so let N -> 00 gives the

result.

Fourier transform

Definition: Let 6 an abelian topological group.

G is the set of continuous homomorphisms

X: 6-55.

Examples: • & Simile abelian (with discrete typelogy) We saw earlier $G \simeq \hat{G}$.

• $G=\mathbb{R}$, $\mathbb{R}\simeq\mathbb{R}$ Given $y\in\mathbb{R}$, define $Xy\in\mathbb{R}$ given by $X_y(x)=e^{2\pi i xy}$

• G=R/Z, $R/Z \simeq Z$ For $n \in Z$, $\chi_n(x) = e^{i\pi i n x}$

 $\circ G = Z$, $\tilde{Z} \simeq R/Z$ $\forall n \in R/Z$, $\chi_{\alpha}(n) = \ell$

Given $(2, \sigma) \in \mathbb{Z}/2\mathbb{Z}) \times \mathbb{R}$, then $\mathbb{R}^* = \{\pm 1\} \times \mathbb{R}^* = \{\pm 1\} \times \mathbb{R}$ Given $(2, \sigma) \in \mathbb{Z}/2\mathbb{Z}) \times \mathbb{R}$, define character given by $\times \longrightarrow \operatorname{sgn}(x)^2 | 1 \times 1^{i\sigma}$.

Note: The map X -> X(g) gives an element of $\hat{\mathcal{G}}$, for all $g \in \mathcal{G}$. Remark: If 6 is locally compact, then Definition (Fourier transform) · 15 fe L2(R) (functions f: R > C s.E. SISIdx = 00), desine Fourier transform $F(f)(y) = f(y) = \int f(x)e^{-2\pi ixy} dx$ • If $f \in L^2(\mathbb{R}/\mathbb{Z})$, $f(f)(n) = f(n) = \int f(x)e^{-2\pi inx} dx$, for $n \in \mathbb{Z}$. · If f: 2/22-00, then f: 2/22-00 f(a) = 1 5 f(a) e 2 . In general, if G is a locally compact abelian group, then there is unique left translation invortant measure on G cup to scaling)

Haan measure.

· for G=R, Haan measure is the usual Cobesque measure counting measure " of dy = = f(g) Sf(x) dx, since dx inverior t under multiplication of x by a constant. Definition: If 6 borally compact abelian group with Haan measure de and $f \in L^2(G)$, define $\hat{f}: \hat{G} \to C$ given by $\hat{f}(\chi) = \int f(g) \chi(g) dg$. Descrition (Schwartz spaces) · let S(R/Z) be the space of all infinitely differentiable functions $f:R/Z\to C$ · let S(R) be the space of all infinitely differentiable functions fix oc such that for all $k, j \in \mathbb{N}$, $f^{(j)}(x) = O_{k,j}(1x1^{-k})$.

• S(Z) the space of all functions $f: Z \to C$ such that $f(x) = O_K(1x1^K)$, for all $K \in \mathbb{Z}$. Theorem: · Let fescR). Then fescR) and $f(x) - \int_{\mathbb{R}} \widehat{f}(y) e^{2\pi i x y} dy = \widehat{f}(-x)$. (Fourier inversion formula) · let ge S(R/Z). Then ge S(Z) and $g(x) = \sum_{n \in \mathbb{Z}} \widehat{g}(n) e^{2\pi i n x}$. · Let g: Z/2Z -> C. Then $g(x) = \frac{1}{\sqrt{2}} \sum_{\alpha} \widehat{g}(\alpha) e^{\frac{2\pi i x \alpha}{2}}.$ Progl: exercise.